ELECTRONIC STRUCTURE OF CYCLOPROPENONE 1

Werner Schäfer and Armin Schweig

Fachbereich Physikalische Chemie der Universität D-355 Marburg/Lahn, Biegenstraße 12 (Germany)

Günther Maier and Tugmac Sayrac

Fachbereich Chemie der Universität

D-355 Marburg/Lahn, Lahnberge (Germany)

Jack K. Crandall

Department of Chemistry, Indiana University
Bloomington, Indiana 47401 (USA)

(Received in UK 1 February 1974; accepted for publication 15 February 1974)

Prompted by a recent paper by Robin et al. 2 dealing with the photoelectron (pe) spectrum of cyclopropenone ($\underline{1}$) 3 we present our results on the electronic structure of $\underline{1}$ gained from the pe spectra of 2,3-di-tert-butylcyclopropenone ($\underline{2}$) and trans-2,3-di-tert-butylcyclopropanone ($\underline{2}$) 4 in conjunction with MINDO/2 5 calculations. Our interests are (in the framework with studies on the electronic structure of annulenones 6,7) mainly concerned with the inductive and conjugative interactions between the C=C and C=O moieties.

The pe spectrum 8 of $\underline{2}$ exhibits bands at 8.23 eV and 9.61 eV (vibrational spacing = 1320 $^{+}$ 40 cm $^{-1}$). Table 1 summarizes the observed and calculated vertical ionization of the lone pair (n) MO on the oxygen atom and the second band arises from ionization of the π (b₁) MO which is mainly localized on the C=C bond.

This assignment is supported by two experimental 9 observations: (1) The n-MO (8.45 eV) of $\underline{2}$ is found at nearly the same energy as the n MO of $\underline{2}$ and (2\) the vibrational spacing of the second pe band of $\underline{2}$ lies in a range which is characteristic for the ionization of a π MO.

ionization potenials (eV	ionization	potenials	(eV)
--------------------------	------------	-----------	------

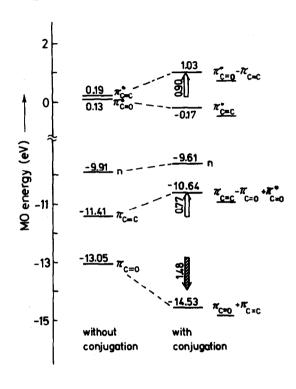

_	<u>1</u>			2	
	obs. 2	ab initio ²	MINDO/2	obs.	MINDO/2
n	9.57	9.61	9.61	8.23	8.64
π (2b ₁)	11.19	10.40	10.64	9.61	9.56

Table 1 Measured (obs.) and calculated ionization potentials of $\underline{1}$ and $\underline{2}$ Our results show that both (n and π) MOs are nearly equally raised on the introduction of the two tert-buty1 substituents. The observed strong destabilization of the n MO represents an experimental confirmation of the marked delocalization of the lone pair (the n MO appears as a linear combination between the oxygen 2p AO and the e_a MO of cyclopropane) predicted by the ab initio $\frac{2}{\pi}$ and MINDO/2 calculations which allows significant hyperconjugative interaction with the alky1 substituents.

Now let us turn to the π MO. The carbonyl group may exert three effects on the C=C π MO: (1) a stabilizing inductive effect, (2) a destabilizing conjugative effect (through antibonding interaction between the π C=C and π C=O MOs) and (3) a stabilizing conjugative effect (through bonding interaction between the π C=C and π^* MOs). A comparison of the π MO energy of 1 and 2 with the corresponding energies of suitably ¹⁰ chosen reference compounds, namely ethylene (10.51 eV ¹¹) and cis-1,2-di-tert-butylethylene (8.69 eV ¹²) suggests that the stabilizing effects (1) and (3) predominate. Experimentally, the three effects (1) to (3) cannot be further separated for the π (b₁) MOs of $\frac{1}{2}$ and $\frac{2}{2}$.

According to MINDO/2 calculations following a method described elsewhere 6 the inductive effects of the carbonyl group on the π (a₂) MOs of cyclopentadienone and

tropone are -0.86 eV (the measured effects for derivatives of cyclopentadie-none are in good agreement -(0.7 - 0.8) eV 7) and -0.64 eV, respectively. The same method yields, as expected, an even greater inductive stabilization for the π (b₁) MO of unsubstituted cyclopropenone ($\underline{1}$), namely -1.07 eV, and -0.68 eV for $\underline{2}$.

Figure 1

Calculated (MINDO/2 method) relevant occupied and vacant (*) MO energies with and without (for the method cf. ref. 7) conjugative interaction between the C=C and C=O units.

Based on these values the sum of the conjugative effects (2) and (3) is only about 0.4 eV for $\underline{1}$ and about zero for $\underline{2}^{12}$. The corresponding evaluated effects (destabilization of the π C=C MO caused by π conjugative interaction between the C=C and C=O fragments) amounts to 0.77 eV for $\underline{1}$ as shown in Figure 1 and to 0.06 eV for $\underline{2}$. Moreover, the obtained (Figure 1) splitting pattern

points to the possible existence of $\pi_{C=C}/\pi_{C=0}^{m}$ mixing ¹³ (effect (3)). Accordingly, the calculated π charge transfer from the C=C to the C=O unit (mostly to the oxygen atom) amounts to 0.29 e for <u>1</u> and 0.24 e for <u>2</u>. These data suggest that the cyclopropenone system, indeed, bears some resemblance to the aromatic cyclopropenyl cation ¹⁴.

References

- Part 45 of "Theory and Application of Photoelectron Spectroscopy". This
 work was supported by the Deutsche Forschungsgemeinschaft and the Fonds
 der Chemischen Industrie. Part 44: A. Schweig, U. Weidner, and G. Manuel,
 submitted for publication.
- W.R. Harshbarger, N.A. Kuebler, and M.B. Robin, submitted for publication.
 We wish to thank Dr. Robin for sending a preprint of this paper.
- 3. R. Breslow and M. Oda, J.Amer.Chem.Soc. 94, 4787 (1972).
- 4. We are grateful to Professor F.D. Greene for supplying us with a detailed procedure for preparing 2.
- M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York 1969.
- 6. C. Müller and A. Schweig, Angew.Chem., in press.
- 7. W. Schäfer, A. Schweig, G. Maier, and T. Sayrac, J.Amer.Chem.Soc., in press.
- 8. The He-I (584 Å) photoelectron spectra were recorded on a PS-18 spectrometer from Perkin-Elmer, Beaconsfield (England).
- 9. The determination of MO energies throughout this work is based on the validity of Koopmans' theorem: T. Koopmans, Physica $\frac{1}{2}$, 104 (1934).
- 10. The use of the π MO of cyclopropene (9.86 eV: M.B. Robin, C.R. Brundle, N.B. Kuebler, G.B. Ellison, and K.B. Wiberg, J.Chem.Phys. <u>57</u>, 1758 (1972)) as a basis MO is misleading because of the strong hyperconjugative interaction between the methylene and π units in this molecule: C. Müller and A. Schweig, unpublished results.
- 11. D.W. Turner, C. Baker, A.D. Baker, and C.R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, London 1970.
- P. Masclet, D. Grosjean, G. Mouvier, and J. Dubois, J.Electron Spectr.
 2, 225 (1973). The value given here probably refers to the adiabatic IP.
 The vertical IP should be higher by about 0.2 eV.
- 13. D. Chadwick, D.C. Frost, and L. Weiler, J.Amer.Chem.Soc. 93, 4320 (1971).
- 14. B.A. Hess, Jr., L.J. Schaad, and C.W. Holyoke, Tetrahedron 28, 5299 (1972).